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Course:

Course Topics
Artificial Intelligence (Al) in medicine
Al and Fuzzy systems and its applications in medicine
Machine Learning and its applications in medicine
Evolutionary systems and its applications in medicine
Neural networks and deep neural networks in medicine
Application of Al in Early Detection of Disease
Swarm Intelligence and multi-agent/swarm in medicine
Application of Al in Cancer
Application of Al in surgery
Applications of Al in Neurology
Application of Al in Internal Medicine
Applications of Al in cardiovascular
Applications of Al in Breast Disease
Application of Al in Ophthalmology
Application of Al in Nephrology
Application of Al in Otorhinolaryngology
Application of Al in Gynecology and obstetrics
Application of Al in pediatric medicine
Application of Al in anesthesia
Application of Al in emergency medicine
Applications of artificial intelligence in orthopedics
Application of Al in pain management
Application of Al in pharmacology
Application of Al in dentistry
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Breast Cancer

-Ductal carcinoma in situ,

-Invasive ductal carcinoma,

-Inflammatory breast cancer

-Metastatic breast cancer. 5



How Common?
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Women Will Be Diagnosed with Breast Cancer

Know the Warning Signs
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New lumps in breast Thickening or swelling Irritation or dimpling
or armpit of the breast of breast skin
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Supplementing human expertise with an automated
program means catching more cancers

Nature 620, 471 (2023)



Current status of Artificial
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intelligence in Breast Cancer
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[ Cancer radiology [ General cancers
M Clinical oncology
mour
B Others

[7] Pathology [ Breast cancer
[ Lung cancer
Prostate cancer
\Qnecology
Claudio Luchini Et al, “Artificial intelligence in oncology: current applications and future perspectives
British Journal of Cancer, vol. 126, pages4-9, 2022.
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Screening: breast cancer

The promise of Al in personalized breast cancer screening

EARLY

DETECTION

SAVES
CLIVES

Nature Reviews Clinical Oncology volume 21, pages403—-404 (2024)

Scott Mayer McKinney et al, “International evaluation of an Al system for breast

cancer screening,” Nature volume 577, pages89-94 (2020) .


https://www.nature.com/nrclinonc
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Early Detection of Breast Cance
Using Virtual biopsy

= Detect Early,

Treat Better




New types of Breast Cancer Biopsy-:—
Breath biopsy

Sensor responses

e Volatile biomarker / %

Time . . / . ) |‘ I'|
. on i ) FAN

Supervised machine AR |
el ; . ' Sensor arrays |
learning analysis

3 / )
f \l 2= L~ —
Time
©
/
. "’
0 °)

Breath biopsy Breast cancer ce

Breath biopsy of breast cancer using sensor array signals and machine learning analysis,
Scientific Reports volume 11, Article number: 103 (2021) 11
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[ ] — Al system I— Perfonimfa.nce S
l J Prediction analysis

score

Standard
mammographic views
of cases & controls

(a)

Saliency analysis Saliency

of Al system thresholding

Saliency map l
Manual Measure DSC
segmentation overlap
Input case Segmented
mammogram lesion
(b)
12

Scientific Reports volume 13, Article number: 20545 (2023)



https://www.nature.com/srep

Machine learning-based prediction .-
of breast cancer growth rate in vivo

Tumour missed in Tumour detected in
screening mammogram diagnostic mammogram

Tumour Patient
genesis mEEsmmmEees ) outcomes
Initl volume | e nostic
period of tumour
growth in vivo
D Study cohort ° STUDY COHORT of patients Tumour resection G Surr-INVIGOR stratifies
Validation with tumour volume data from V tumours in study cohort

2 serial mammograms (n = 92)

\4

e Tumour growth rate calculation

\4

cohort

Study cohort sections stained for 3
routinely assessed BC biomarkers

\4

ML and feature selection

0 2000 000 00
‘Survval sme (years)

0 8000 10,000

lo @ o

o Developed SM-INVIGOR approach used to create model to v
. o . redict SM growth groups
which stratifies tumours in P g group ‘ Surr-INVIGOR tested on large
study cohort v validation cohort (n = 1241)
of BC patients
WN_ @ Surr-INVIGOR includes i
Y e Ki67, Ml & tumour size \ 4
w{ q I\i/rl::‘c;t;(c Histological size ™= c Surr-INVIGOR stratifies
O o T S T tumours in VC
Survival tme (years) = ; e f '
\4 DEE
SM-INVIGOR's clinical utility is -
limited since most patients lack -
tumour volume data from 2 serial T o we wh wn o
mammograms

British Journal of Cancer volume 121, pages497-504 (2019) 13



https://www.nature.com/bjc

Factors
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Breast cancer specific survival

o

Breast cancer specific survival

1.00
Multivariate analysis of the association between clinicopathological
variables and patient’s outcome in the study cohort
0.75 4
Hazard ratio (95% Cl) p-value
0.50 Overall survival

T Age <65 vs >65 0.989 (0.912-1.072) 0.78

ER Neg 0.836 (0.229-2.98) 0.77

0.25 4 Grade 3 3.684 (0.043-30.623) 0.22
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““--..,,% Multivariate analysis of the association between clinicopathological
""-MM variables and patient’s outcome in the validation cohort
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050 Overall survival
Age <65 vs >65 1.006 (0.994-1.018) 0.3242
ER Neg 1.312 (1.008-1.707) 0.0435
0.25 4 Grade 3 7.204 (3.609-14.382) <0.001
Grade 2 3.723 (1.853-7.481) 0.0002
0004P< 0.01 Surr-INVIGOR Above 2.059 (1.276-3.324) 0.0031
1 2 3 4 5 6 7 8 9 10
Years
Threshold ———- Above Below
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Artificial intelligence reveals features associated with breasi
cancer neoadjuvant chemotherapy responses from multi-
stain histopathologic images

HEE 4 e

Segmentation  Original

Machine learning

Proportion maodel to predict

p CD8 inlymphocytes  Area ratio
NAC outcome

|#| CD163 in lymphocytes  Area ratio
B PD-L1 inlymphocytes  Area ratio

d. Feature construction e. NAC prediction
“ (COER inlianorl e el Y . I Clinical features
lw| CD163 in tumoral Arearatio  Purity  Proportion
B PD-L1 in umoral Arearatio  Purty  Proportion Tissue-level features
&P CD8 in stromal Area ratio Purty  Proportion
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B PO-L1 in stromal Area ratio Purity  Proportion
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Purity

Lymphocytes

npj Precision Oncology volume 7, Article number: 14 (2023) "



https://www.nature.com/npjprecisiononcology

b.H&E segmentation result
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€. Selected representative patches

d.IHC segmentation (non-rigid registered)
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f.IMPRESS feature graphical demonstration
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a. HER2+ ROC curve

c. HER2+ cohort feature importance

d. TNBC cohort feature importance
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Deep Learning to Improve Breast Cancel-
Detection on Screening Mammograph

.. Whole image network feature map

.............

B Patch network feature map

’-/”;:.-; /UXVXC
'31 _4__,"\1x1xc

-~
-
-
-
-
- -

{cancer,
normal}

-------

T

Removal of heatmap function g : using
convolutional as

top layers

)

-
-
-
-
-

1

function f: pretrained on ROI patches

T
function h : whole image classification

Scientific Reports volume 9, Article number: 12495 (2019)
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https://www.nature.com/srep

Robust artificial intelligence
tools to predict future cancer

* created a risk-assessment algorithm

https://news.mit.edu/2021/robust-artificial-intelligence-tools-predict-future-cancer-
0128

19



Predicting cancer outcomes with radiomics |
and artificial intelligence in radiology

A physician identifies a

DICOM imaging data for

Scans and reports retrospective cohort for Imaging and clinical
Patient receives P cohart are curated
mu;ti sle radioloay uploaded to picture an Al study based upon gnln(:)(v\allr ;:r::n:((ezngv data are anonymized
i ) () archiving and — | indication, treatment, | ——| 2PY Y v | and securely
assessments inf - radiologist; oncologists f dto Al
during care communication outcome information compile database of clinical transferred to
system and/or availability of > rescarchers

N i ni |
imaging data and outcome information

A :
f

Radiomics Al approach
Texture
Intensity and tumour Peritumoural  Radiomics of  Tumour vessel
statistics heterogeneity radiomics tumour shape  radiomics

Input Deep learning Al approach
2D or 3D

Convolutional layers Fully connected layers

s [ 80% response
\/ 7] 20% non-response

[ Pooling | Flattening ‘

Predict

Outcome prediction Prognosis Radiogenomics
* Response « 05 * Actionable mutations
* Bonefit from therapy * RFS and PFS * Molecular assays
* Adverse events * Escalation or de-escalation * Serial updates to molecular
* Confounder versus of therapy biomarkers
true progression * Prioritization for clinical * Elucidate biological rationale for
trials imaging Al-based biomarkers

yAv)

Nature Reviews Clinical Oncology volume 19, pages132-146 (2022)



https://www.nature.com/nrclinonc

Classification and diagnostic prediction of breast
cancer metastasis on clinical data using machine
learning algorithms

Scientific Reports volume 13, Article number: 485 (2023) 21



https://www.nature.com/srep
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multimodal Multiview ultrasound images via clinically
applicable deep learning

Prospective assessment of breast cancer risk froi " .

Cancer risk prediction model

View-level retrospective US images
from either transverse or longitudinal view

usemote B I IE R B B o B B 00000000000000000
US colour
> —» 0000000000000
oo 0 I BE B o
us o
: O0000000000000000
m— - IR

Pre-trained weights from ImageNet Learned features

Lesion-level prospective US images Clinical decision-making

Step 2 BCRS 4a
Transverse view Step 1 * @ ® BCRS+4b+
e Malignancy risk probability @ BCRS 4c+

\-’ . " from transverse view i /\
*  Heatmaps 4l 4& i i Malignant .

US colour Doppler il US elastography « Varying operating points

X P, =average (P, P,) Assist BI-RADS
. lexicon

+ Heatmaps Investigate the Al’s prediction «— clinicians

Malignancy risk probability : s ;
US B mode US colour Doppler US elastography from longitudinal view X Qgg:i;gIeglllilg;l(car:l?:(:)end)eaoghtr;ee:t?::pc’f

Make a BI-RADS decision confidently

Nature Biomedical Engineering volume 5, pages522-532 (2021) 22



https://www.nature.com/natbiomedeng

Human experts
(radiologists)

( 152-lesion test \

#152

Assign
and
display

P

---------------------------------------------

Investigate consistency with Al prediction

» %" Make a BI-RADS decgion confidently

- 3¢ (1) re-@valuate ROIs on tha basis of haatmaps
(2) acjust it needed — final B-RADS dacision

---------------------------------------------

-

______________________________________

1 Initial diagnosis made by human experts

L)
T -

First
view

us
B mode

US colour

Doppler

us
elastography

view
X

.j

Highlight
important
regions

— >

a;v,_uju.g",«

Workflow of
Breast cancer human experts
isk probabilities
e - Workflow of
Py Py Py Al assistant
R

Second
heatmap

Third \

heatmap
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. P
o Flactis k0,

First view Second view
(transverse) (longitudinal)

US image

Heatmap

Qverall Al
prediction

First view Second view
(transverse)  (longitudinal)

e

Overall Al
Malignancy risk probability > 0.95 prediction Malignancy risk probability < 0.02

24



1 -
,Breast tumour

Al traces mysterious metastatic ...
cancers to their source

[ ]
ESCAPE FROM THE b \nTRAVASATION & C  EXTRAVASATION & The
PRIMARY TUMOUR & SURVIVAL IN THE METASTATIC SEEDING i
LOCAL INVASION CIRCULATION e Igorl.th I
examines

N images of
Metastasis metastatic
cells to
identify the
location of
the primary
tumor.

Primary
tumour

Metastatic
tumour cell

'Blood or lymphatic vessel

1
1
1
]
1
1
1
]
]
: Brain metastasis

::,._/V i

Primary tumour ‘& Metastatic tumour cell :: Metastasis

https://www.nature.com/articles/d41586-024-01110-8
25



Biomarker Discovery in Breast
Cancer

A Rectangular strategy
Phases Number of Number of
samples proteins
&
DISCOVERY » ?ﬁ”&g@p Not changed
Shotgun S
proteomics & & @ —» Study specific
+ Conert - & Validated

= g &.’_’ biomarkers

4 VALIDATION W @e&@ —» study specific

Shotgun & W &

proteomics Cohort 2 Sb_ﬁ':%‘s. Fag Not changed
Tissues  Tissue biopsies  Body fluids 100s-1000s 100s-1000s

@
(¢}

Proteome correlation maps
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-
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Deep learning in cancer pathology:
a new generation of clinical
biomarkers

g JZ"/J'.@‘;

b Chest CT
4096 px

Same patient

C Tumour detection d Library preparation e Preprocessing f Training and testing

Option 1: train-test split

Option 2: cross-validation

Option 3: external testing

)

Option 1: weakly
supervised learning

g External validation

)

External

Option 2: restrict to Size and magnification

tumour tissue may vary data set

Amelie Echle, “Deep learning in cancer pathology: a new generation of clinical biomarkers,” British
Journal of Cancer volume 124, pages686—696 (2021) 27



Stepl Collection Of 19 Sorts Of Purified Immune Cells

®- @ Y
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Step3 Screening Immune Infiltrating Cell Associated RNAs (IIC-RNAs)

LassoLR RandomForest

Xgboost
Boruta
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Step4 Construction of MLIIC signature
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LassoCox CoxBoost
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For Survival
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Input Data Methods for Scoring Based on C-Index

'
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Signatures Comparision Process Microenviroment

Step5 Follow-up Analysis

i
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https://journalofbigdata.springeropen.com/

Breast Cancer Recurrence L '}
Prediction

Click on image to zoom

Low
ID Patient 12 156
Side, View Right, CC Left, CC

TNM  TINOMO T2N1MO T2N1MO
OncotypeDXRS 6.6 -6.7

5 142 2
Right, CC Left, CC Right, CC

T2N2MO T3N1IMO

92.4 141.8 172.1
OncotypeDX Risk Low Low High High High
PAMS50 Normal-like LumA LumB Basal-like Her2

Relative Fractal Dim. -1.53% 2.56% 5.57% 5.84% 5.00%

The lingering mysteries of metastatic recurrence in breast cancer, British Journal of Cancer volume
124, pages13-26 (2021)
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Artificial Intelligence in ‘

Breast Cancer
Treatment
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Normal breast duct

Shikha Roy Et al., Classification models for Invasive Ductal Carcinoma Progression, based on gene
expression data-trained supervised machine learning, Scientific Reports volume 10, Article number: 4113
(2020)
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Predicting the Risk of Breast
Cancer

. b . V £y
yAdbg ’Méwid’/{)‘sléb

—— | Validation
Dataset

Identify Best
Performance

i)

Model Training
and Fine Tuning

Pre-Processing

l Pre-trained model
InceptionResNetV2
input
mnpul Y O()utput v
| y y ® i LA
Pre-processed > e — & ._;":-j. 0"}_ Classification
Dataset ® . P ®

Electronics 2023, 12(2), 403;
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Analyzing Signaling Pathway for &)
therapeutic targets e

L2 " ALA lock diagra (b) GIST workflow

« Sampling .S
Subcetiter NP 4 Gibbs Sampling on PP ’ - .
<Estimate pathway and Rl t -" |
edge distribution - b -4
J
Legends for subfigures 1,2,and 3:
w Membrane genes & Differentially expressed
i Cyopia ganse ~  Not differentially expressed
¢ o / Strong correlation
/_  Weak correlation

Scientific Reports volume 11, Article number: 385 (2021)
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https://www.nature.com/srep

Predicting Mortality and Morbidity.....-

Clinical work flow and data acquisition Pradiction of response to neocadjuvant therapies
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Prediction Breast Cancer Treatment
complications
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predicting treatment response ...

Nature Reviews Clinical
Oncology volume 19, pages132-146 (2022)
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Cancer Radiology
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 January 2021: Visage Breast Density (Visage Imaging)

* The software application is intended for use with
compatible full-field digital mammography to aid
radiologists in the assessment of breast tissue
composition

Claudio Luchini Et al, “Artificial intelligence in oncology: current applications and future perspectives
British Journal of Cancer, vol. 126, pages4-9, 2022.
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Machine learning improves prediction of ...
clinical outcomes for invasive breast cancers
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Validation and real-world clinical application of an

artificial intelligence algorithm for breast cancer -
detection in biopsies
SN DGR
npj Breast Cancer volume 8, Article number: 129 (2022 41



https://www.nature.com/npjbcancer

Drug Discovery and Targeted
Drug Delivery
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Nanomedicine

[11 N. Rady Raz, M. R. Akbarzadeh T., "Target Convergence Analysis of Cancer Inspired Swarms for Early Disease
Diagnosis and Targeted Collective Therapy,"IEEE Transactions on Neural Networks and Learning Systems, 2022.

[2] N. Rady Raz, M. R. Akbarzadeh T., "Swarm-Fuzzy Rule-Based Targeted Nano Delivery Using Bioinspired
Nanomachines,"IEEE Transactions on NanoBioscience,\Vol.18, No.3, pp. 404 - 414, July 2019.

[3] N. Rady Raz, M. R. Akbarzadeh T., M. Tafaghodi, "Bio-Inspired Nanonetworks for Targeted Cancer Drug Dellvery,"IEEE
Transactions on NanoBioscience,Vol. 14 No.8, pp. 894-906, Dec. 2015.



[ Fate of nanobot treated 3D spheroid of HCT116 cells
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clinical trust and adoption of Al ..
technology

Fairness

Universality

Traceability

Usability

Robustness

Explainability

European Journal of Radiology Volume 175, June 2024, 111457
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Challenges and Ethical Considerations

data privacy, potential biases in datasets
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Al

Note that!!

« AI may not replace human doctors.

e Since doctors are trained to not only diagnose and

treat diseases but also to provide emotional support
to patients.

* Al cannot replace the empathy and compassion that
doctors bring to their work.
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* Fairness. Al algorithms should maintain the same
performance when applied to similar individuals
(individual fairness) and across subgroups of
individuals, including under-represented groups
(group fairness).
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* Universality. This principle recommends the
definition and application of (technical, clinical,
ethical, and regulatory) standards during Al
development, evaluation, and deployment. This will
increase the interoperability and applicability of Al
tools across clinical centers.

51



* Traceability. Medical Al algorithms should be
developed with mechanisms for documenting and
monitoring the development process, as well as be
paired with methods to continuously or periodically

monitor their functioning in the clinical
environment.
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e Usability. Medical Al tools should be usable,
acceptable, and deployable for the real-world end
users (i.e., physicians, radiologists, and other end
users).
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* Robustness. This principle refers to maintaining Al’s
performance and accuracy when it is applied under
the highly variable conditions that could be
encountered in the real world, outside the
controlled environment of the laboratory where
the algorithm was built and initially tested.
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* Explainability. Medical Al algorithms should be able
to provide meaningful and actionable explanations
of their predictions to the end users. Explainability
provides insight into the algorithmic mechanisms
behind the Al decision-making processes.
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